RLlib Offline Datasets

Working with Offline Datasets

RLlib’s offline dataset APIs enable working with experiences read from offline storage (e.g., disk, cloud storage, streaming systems, HDFS). For example, you might want to read experiences saved from previous training runs, or gathered from policies deployed in web applications. You can also log new agent experiences produced during online training for future use.

RLlib represents trajectory sequences (i.e., (s, a, r, s', ...) tuples) with SampleBatch objects. Using a batch format enables efficient encoding and compression of experiences. During online training, RLlib uses policy evaluation actors to generate batches of experiences in parallel using the current policy. RLlib also uses this same batch format for reading and writing experiences to offline storage.

Example: Training on previously saved experiences

Note

For custom models and enviroments, you’ll need to use the Python API.

In this example, we will save batches of experiences generated during online training to disk, and then leverage this saved data to train a policy offline using DQN. First, we run a simple policy gradient algorithm for 100k steps with "output": "/tmp/cartpole-out" to tell RLlib to write simulation outputs to the /tmp/cartpole-out directory.

$ rllib train
    --run=PG \
    --env=CartPole-v0 \
    --config='{"output": "/tmp/cartpole-out", "output_max_file_size": 5000000}' \
    --stop='{"timesteps_total": 100000}'

The experiences will be saved in compressed JSON batch format:

$ ls -l /tmp/cartpole-out
total 11636
-rw-rw-r-- 1 eric eric 5022257 output-2019-01-01_15-58-57_worker-0_0.json
-rw-rw-r-- 1 eric eric 5002416 output-2019-01-01_15-59-22_worker-0_1.json
-rw-rw-r-- 1 eric eric 1881666 output-2019-01-01_15-59-47_worker-0_2.json

Then, we can tell DQN to train using these previously generated experiences with "input": "/tmp/cartpole-out". We disable exploration since it has no effect on the input:

$ rllib train \
    --run=DQN \
    --env=CartPole-v0 \
    --config='{
        "input": "/tmp/cartpole-out",
        "input_evaluation": [],
        "exploration_final_eps": 0,
        "exploration_fraction": 0}'

Off-policy estimation: Since the input experiences are not from running simulations, RLlib cannot report the true policy performance during training. However, you can use tensorboard --logdir=~/ray_results to monitor training progress via other metrics such as estimated Q-value. Alternatively, off-policy estimation can be used, which requires both the source and target action probabilities to be available (i.e., the action_prob batch key). For DQN, this means enabling soft Q learning so that actions are sampled from a probability distribution:

$ rllib train \
    --run=DQN \
    --env=CartPole-v0 \
    --config='{
        "input": "/tmp/cartpole-out",
        "input_evaluation": ["is", "wis"],
        "soft_q": true,
        "softmax_temp": 1.0}'

This example plot shows the Q-value metric in addition to importance sampling (IS) and weighted importance sampling (WIS) gain estimates (>1.0 means there is an estimated improvement over the original policy):

_images/offline-q.png

Estimator Python API: For greater control over the evaluation process, you can create off-policy estimators in your Python code and call estimator.estimate(episode_batch) to perform counterfactual estimation as needed. The estimators take in a policy graph object and gamma value for the environment:

trainer = DQNTrainer(...)
...  # train policy offline

from ray.rllib.offline.json_reader import JsonReader
from ray.rllib.offline.wis_estimator import WeightedImportanceSamplingEstimator

estimator = WeightedImportanceSamplingEstimator(trainer.get_policy(), gamma=0.99)
reader = JsonReader("/path/to/data")
for _ in range(1000):
    batch = reader.next()
    for episode in batch.split_by_episode():
        print(estimator.estimate(episode))

Simulation-based estimation: If true simulation is also possible (i.e., your env supports step()), you can also set "input_evaluation": ["simulation"] to tell RLlib to run background simulations to estimate current policy performance. The output of these simulations will not be used for learning. Note that in all cases you still need to specify an environment object to define the action and observation spaces. However, you don’t need to implement functions like reset() and step().

Example: Converting external experiences to batch format

When the env does not support simulation (e.g., it is a web application), it is necessary to generate the *.json experience batch files outside of RLlib. This can be done by using the JsonWriter class to write out batches. This runnable example shows how to generate and save experience batches for CartPole-v0 to disk:

import gym
import numpy as np

from ray.rllib.evaluation.sample_batch_builder import SampleBatchBuilder
from ray.rllib.offline.json_writer import JsonWriter

if __name__ == "__main__":
    batch_builder = SampleBatchBuilder()  # or MultiAgentSampleBatchBuilder
    writer = JsonWriter("/tmp/demo-out")

    # You normally wouldn't want to manually create sample batches if a
    # simulator is available, but let's do it anyways for example purposes:
    env = gym.make("CartPole-v0")

    for eps_id in range(100):
        obs = env.reset()
        prev_action = np.zeros_like(env.action_space.sample())
        prev_reward = 0
        done = False
        t = 0
        while not done:
            action = env.action_space.sample()
            new_obs, rew, done, info = env.step(action)
            batch_builder.add_values(
                t=t,
                eps_id=eps_id,
                agent_index=0,
                obs=obs,
                actions=action,
                action_prob=1.0,  # put the true action probability here
                rewards=rew,
                prev_actions=prev_action,
                prev_rewards=prev_reward,
                dones=done,
                infos=info,
                new_obs=new_obs)
            obs = new_obs
            prev_action = action
            prev_reward = rew
            t += 1
        writer.write(batch_builder.build_and_reset())

On-policy algorithms and experience postprocessing

RLlib assumes that input batches are of postprocessed experiences. This isn’t typically critical for off-policy algorithms (e.g., DQN’s post-processing is only needed if n_step > 1 or worker_side_prioritization: True). For off-policy algorithms, you can also safely set the postprocess_inputs: True config to auto-postprocess data.

However, for on-policy algorithms like PPO, you’ll need to pass in the extra values added during policy evaluation and postprocessing to batch_builder.add_values(), e.g., logits, vf_preds, value_target, and advantages for PPO. This is needed since the calculation of these values depends on the parameters of the behaviour policy, which RLlib does not have access to in the offline setting (in online training, these values are automatically added during policy evaluation).

Note that for on-policy algorithms, you’ll also have to throw away experiences generated by prior versions of the policy. This greatly reduces sample efficiency, which is typically undesirable for offline training, but can make sense for certain applications.

Mixing simulation and offline data

RLlib supports multiplexing inputs from multiple input sources, including simulation. For example, in the following example we read 40% of our experiences from /tmp/cartpole-out, 30% from hdfs:/archive/cartpole, and the last 30% is produced via policy evaluation. Input sources are multiplexed using np.random.choice:

$ rllib train \
    --run=DQN \
    --env=CartPole-v0 \
    --config='{
        "input": {
            "/tmp/cartpole-out": 0.4,
            "hdfs:/archive/cartpole": 0.3,
            "sampler": 0.3,
        },
        "exploration_final_eps": 0,
        "exploration_fraction": 0}'

Scaling I/O throughput

Similar to scaling online training, you can scale offline I/O throughput by increasing the number of RLlib workers via the num_workers config. Each worker accesses offline storage independently in parallel, for linear scaling of I/O throughput. Within each read worker, files are chosen in random order for reads, but file contents are read sequentially.

Input Pipeline for Supervised Losses

You can also define supervised model losses over offline data. This requires defining a custom model loss. We provide a convenience function, InputReader.tf_input_ops(), that can be used to convert any input reader to a TF input pipeline. For example:

def custom_loss(self, policy_loss):
    input_reader = JsonReader("/tmp/cartpole-out")
    # print(input_reader.next())  # if you want to access imperatively

    input_ops = input_reader.tf_input_ops()
    print(input_ops["obs"])  # -> output Tensor shape=[None, 4]
    print(input_ops["actions"])  # -> output Tensor shape=[None]

    supervised_loss = some_function_of(input_ops)
    return policy_loss + supervised_loss

See custom_loss.py for a runnable example of using these TF input ops in a custom loss.

Input API

You can configure experience input for an agent using the following options:

    # Specify how to generate experiences:
    #  - "sampler": generate experiences via online simulation (default)
    #  - a local directory or file glob expression (e.g., "/tmp/*.json")
    #  - a list of individual file paths/URIs (e.g., ["/tmp/1.json",
    #    "s3://bucket/2.json"])
    #  - a dict with string keys and sampling probabilities as values (e.g.,
    #    {"sampler": 0.4, "/tmp/*.json": 0.4, "s3://bucket/expert.json": 0.2}).
    #  - a function that returns a rllib.offline.InputReader
    "input": "sampler",
    # Specify how to evaluate the current policy. This only has an effect when
    # reading offline experiences. Available options:
    #  - "wis": the weighted step-wise importance sampling estimator.
    #  - "is": the step-wise importance sampling estimator.
    #  - "simulation": run the environment in the background, but use
    #    this data for evaluation only and not for learning.
    "input_evaluation": ["is", "wis"],
    # Whether to run postprocess_trajectory() on the trajectory fragments from
    # offline inputs. Note that postprocessing will be done using the *current*
    # policy, not the *behaviour* policy, which is typically undesirable for
    # on-policy algorithms.
    "postprocess_inputs": False,
    # If positive, input batches will be shuffled via a sliding window buffer
    # of this number of batches. Use this if the input data is not in random
    # enough order. Input is delayed until the shuffle buffer is filled.
    "shuffle_buffer_size": 0,

The interface for a custom input reader is as follows:

class ray.rllib.offline.InputReader[source]

Input object for loading experiences in policy evaluation.

next()[source]

Return the next batch of experiences read.

Returns:SampleBatch or MultiAgentBatch read.
tf_input_ops(queue_size=1)[source]

Returns TensorFlow queue ops for reading inputs from this reader.

The main use of these ops is for integration into custom model losses. For example, you can use tf_input_ops() to read from files of external experiences to add an imitation learning loss to your model.

This method creates a queue runner thread that will call next() on this reader repeatedly to feed the TensorFlow queue.

Parameters:queue_size (int) – Max elements to allow in the TF queue.

Example

>>> class MyModel(rllib.model.Model):
...     def custom_loss(self, policy_loss, loss_inputs):
...         reader = JsonReader(...)
...         input_ops = reader.tf_input_ops()
...         logits, _ = self._build_layers_v2(
...             {"obs": input_ops["obs"]},
...             self.num_outputs, self.options)
...         il_loss = imitation_loss(logits, input_ops["action"])
...         return policy_loss + il_loss

You can find a runnable version of this in examples/custom_loss.py.

Returns:dict of Tensors, one for each column of the read SampleBatch.

Output API

You can configure experience output for an agent using the following options:

    # Specify where experiences should be saved:
    #  - None: don't save any experiences
    #  - "logdir" to save to the agent log dir
    #  - a path/URI to save to a custom output directory (e.g., "s3://bucket/")
    #  - a function that returns a rllib.offline.OutputWriter
    "output": None,
    # What sample batch columns to LZ4 compress in the output data.
    "output_compress_columns": ["obs", "new_obs"],
    # Max output file size before rolling over to a new file.
    "output_max_file_size": 64 * 1024 * 1024,

The interface for a custom output writer is as follows:

class ray.rllib.offline.OutputWriter[source]

Writer object for saving experiences from policy evaluation.

write(sample_batch)[source]

Save a batch of experiences.

Parameters:sample_batch – SampleBatch or MultiAgentBatch to save.